INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION MATHEMATICS

CLASS: XII
02.05.2018

Sub Code: 041
Time Allotted: 3 Hrs
Max Marks: 100
General Instructions: This question paper consists of 29 questions divided into 4 sections.
Section A contains 4 questions of one mark each.
Section B has 8 questions of two marks each.
Section C contains 11questions of four marks each.
Section D has 6 questions of six marks each.

SECTION-A ($4 \times 1=4$ marks)

1. Evaluate : $\tan \left(2 \tan ^{-1} \frac{1}{5}\right)$
2. If $f(x)=[x]$ and $g(x)=|x|$, find fog $\left(\frac{-5}{2}\right)$
3. Find the value of $\sin \left[\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)\right]$
4. Differentiate $\sin \left(\cos \left(x^{2}\right)\right)$ with respect to x.

SECTION- B $(8 \times 2=16$ marks $)$

5. Let $*$ be a binary operation on the set of all non-zero real numbers given by $a * b=a+b-a b$ for all $a, b \in R-\{0\}$. Find the value of x, given that $2 *(x * 5)=13$.
6. Find $\frac{d y}{d x}$, if $y=\cos x \cdot \cos 2 x \cdot \cos 3 x$
7. Verify Rolle's theorem for the function $f(x)=x^{2}+2 x-8, x \in[-4,2]$
8. Let $*$ be a binary operation on the set N, of natural numbers, defined by $a * b=a+b+10$, for $a, b \in N$. Find the identity element for $*$, if exists.
9. Find the point at which the line $y=x+1$ is a tangent to the curve $y^{2}=4 x$.
10. Find $\frac{d y}{d x}$, if $x^{2}+x y+y^{2}=100$.
11. Express $\tan ^{-1}\left(\frac{\cos x}{1-\sin x}\right), \frac{-\pi}{2}<x<\frac{3 \pi}{2}$ in simplest form.
12. Show that the function $f(x)=3 x^{2}+5$ is differentiable at $x=2$.

SECTION-C ($11 \times 4=44$ marks $)$

13. Differentiate w.r.t $x:(\log x)^{x}+x^{\log x}$
14. If the function $f: R \rightarrow R$ be given by $f(x)=x^{2}+2$ and $g: R \rightarrow R$ be given by $g(x)=\frac{x}{x-1}$, $x \neq 1$, find $f \circ g$ and $g \circ f$ and hence find $f \circ g(2)$ and $g \circ f(-3)$.
15. Show that $f: R-\{-1\} \rightarrow R-\{1\}$, given by $f(x)=\frac{x-3}{x+1}$ is a bijective function.
16. If $f(x)=\left\{\begin{array}{ll}\frac{k \cos x}{\pi-2 x}, & \text { if } x \neq \frac{\pi}{2} \\ 5, & \text { if } x=\frac{\pi}{2}\end{array}\right.$ is continuous function at $=\frac{\pi}{2}$, find the value of k.

OR

Find the value of k for which the function $f(x)=\left\{\begin{array}{cc}\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x}, & \text { if }-1 \leq x<0 \\ \frac{2 x+1}{x-1}, & \text { if } 0 \leq x \leq 1\end{array}\right.$ is continuous at $x=0$.
17. If $y=3 \cos (\log x)+4 \sin (\log x)$, show that $x^{2} y_{2}+x y_{1}+y=0$.

OR

If $y=\left[\log \left(x+\sqrt{x^{2}+1}\right)\right]^{2}$, show that $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-2=0$.
18. Prove that $\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\frac{x}{2}, x \in\left(0, \frac{\pi}{4}\right)$
19. Find the equation of all lines having slope 2 and which are tangents to the curve

$$
y+\frac{2}{x-3}=0
$$

OR

Find the equations of the tangent and normal to the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=2$ at $(1,1)$.
20.

Solve for $x: \tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}$
21.

If $x=a(\cos t+t \sin t)$ and $y=a(\sin t-t \cos t)$, find $\frac{d^{2} y}{d x^{2}}$.
22.

If $\cos ^{-1}\left(\frac{x}{a}\right)+\cos ^{-1}\left(\frac{y}{b}\right)=\alpha$, prove that $\frac{x^{2}}{a^{2}}-\frac{2 x y}{a b} \cos \alpha+\frac{y^{2}}{b^{2}}=\sin ^{2} \alpha$
23. The length x of a rectangle is decreasing at the rate $3 \mathrm{~cm} / \mathrm{min}$ and the width y is increasing at the rate of $2 \mathrm{~cm} / \mathrm{min}$. When $x=10 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rates of change of (i) the perimeter and (ii) the area of the rectangle.
24.

Find $\frac{d y}{d x}$, if $x=\frac{\sin ^{3} t}{\sqrt{\cos 2 t}}, \quad y=\frac{\cos ^{3} t}{\sqrt{\cos 2 t}} \quad(\mathrm{OR})$
If $(x-a)^{2}+(y-b)^{2}=c^{2}$, for some $c>0$, prove that $\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}}{\frac{d^{2} y}{d x^{2}}}$ is a constant independent of a and b.
25. Find the intervals in which the function $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$ is
(i) strictly increasing (ii) strictly decreasing
26. An operation \otimes is defined on the set $R-\{-1\}$ by $x \otimes y=x+y+x y, x, y \in R$. (i) Prove that \otimes is binary. (ii) Is \otimes commutative? (iii) Is \otimes associative ? (iv) Find its identity element and (v) find the inverse of each element x. (vi) Also evaluate $5 \otimes 3$.

OR

Prove that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b):|a-b|$ is an even number\} is an equivalence relation.
27.

If $x \sqrt{1+y}+y \sqrt{1+x}=0$, prove that $\frac{d y}{d x}=\frac{-1}{(1+x)^{2}}$
28. Consider a function $f: A \rightarrow[-6, \infty)$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible. Find $f^{-1}(x)$.
29. Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the sphere.

OR

A wire of length 28 m is to be cut into two pieces. One of the piece is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?

End of the Question Paper

